虚位以待(AD)
虚位以待(AD)
首页 > 软件编程 > C/C++编程 > C++中四种加密算法之AES源代码

C++中四种加密算法之AES源代码
类别:C/C++编程   作者:码皇   来源:互联网   点击:

本篇文章主要介绍了C++中四种加密算法之AES源代码,小编觉得挺不错的,现在分享给大家,也给大家做个参考。

摘要:作为新一代的加密标准,AES 旨在取代 DES(请看《DES加密算法的C++实现》),以适应当今分布式开放网络对数据加密安全性的要求。本文在分析了 AES 加密原理的基础上着重说明了算法实现的具体步骤,并用 C++ 实现了对文件的加密和解密。

一、AES 介绍

AES(高级加密标准,Advanced Encryption Standard),在密码学中又称 Rijndael 加密法,是美国联邦政府采用的一种分组加密标准。这个标准用来替代原先的 DES,目前已经广为全世界所使用,成为对称密钥算法中最流行的算法之一。

在 AES 出现之前,最常用的对称密钥算法是 DES 加密算法,它在 1977 年被公布成为美国政府的商用加密标准。DES 的主要问题是密钥长度较短,渐渐不适合于分布式开放网络对数据加密安全性的要求。因此,1998年美国政府决定不再继续延用 DES 作为联邦加密标准,并发起了征集 AES 候选算法的活动。征集活动对 AES 的基本要求是: 比三重DES快、至少与三重DES一样安全、数据分组长度为128比特、密钥长度为128/192/256比特。

经过三年多的甄选,比利时的密码学家所设计的 Rijndael 算法最终脱颖而出,成为新一代的高级加密标准,并于 2001 年由美国国家标准与技术研究院(NIST)发布于 FIPS PUB 197。

二、AES 算法原理

AES算法(即 Rijndael 算法)是一个对称分组密码算法。数据分组长度必须是 128 bits,使用的密钥长度为 128,192 或 256 bits。对于三种不同密钥长度的 AES 算法,分别称为“AES-128”、“AES-192”、“AES-256”。(Rijndael 的设计还可以处理其它的分组长度和密钥长度,但 AES 标准中没有采用)

下图是 AES 加密解密的整体流程图:

这里我们需要知道3个符号:Nb—— 状态 State 包含的列(32-bit 字)的个数,也就是说 Nb=4;Nk—— 密钥包含的 32-bit 字的个数,也就是说 Nk=4,6 或 8;Nr—— 加密的轮数,对于不同密钥长度,轮数不一样,具体如下图所示:

下面分为密钥扩展、分组加密、分组解密三个部分来讲 AES 算法,我会尽可能地简明扼要,若还有不懂的,请自行 Google。

1)密钥扩展

AES 算法通过密钥扩展程序(Key Expansion)将用户输入的密钥 K 扩展生成 Nb(Nr+1)个字,存放在一个线性数组w[Nb*(Nr+1)]中。具体如下:

  • 位置变换函数RotWord(),接受一个字 [a0, a1, a2, a3] 作为输入,循环左移一个字节后输出 [a1, a2, a3, a0]。
  • S盒变换函数SubWord(),接受一个字 [a0, a1, a2, a3] 作为输入。S盒是一个16x16的表,其中每一个元素是一个字节。对于输入的每一个字节,前四位组成十六进制数 x 作为行号,后四位组成的十六进制数 y 作为列号,查找表中对应的值。最后函数输出 4 个新字节组成的 32-bit 字。
  • 轮常数Rcon[],如何计算的就不说了,直接把它当做常量数组。
  • 扩展密钥数组w[]的前 Nk 个元素就是外部密钥 K,以后的元素w[i]等于它前一个元素w[i-1]与前第 Nk 个元素w[i-Nk]的异或,即w[i] = w[i-1] XOR w[i-Nk];但若 i 为 Nk 的倍数,则w[i] = w[i-Nk] XOR SubWord(RotWord(w[i-1])) XOR Rcon[i/Nk-1]。

注意,上面的第四步说明适合于 AES-128 和 AES-192,详细的伪代码如下:

密钥扩展程序的 C++ 代码(AES-128):

    #include <iostream> #include <bitset> using namespace std;
    typedef bitset<8> byte;
    typedef bitset<32> word;
    const int Nr = 10;
    // AES-128需要 10 轮加密 const int Nk = 4;
    // Nk 表示输入密钥的 word 个数 byte S_Box[16][16] = {
    {
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76}
    , {
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0}
    , {
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15}
    , {
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75}
    , {
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84}
    , {
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF}
    , {
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8}
    , {
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2}
    , {
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73}
    , {
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB}
    , {
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79}
    , {
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08}
    , {
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A}
    , {
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E}
    , {
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF}
    , {
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16}
    }
    ;
    // 轮常数,密钥扩展中用到。(AES-128只需要10轮) word Rcon[10] = {
    0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000}
    ;
    /** * 将4个 byte 转换为一个 word */ word Word(byte& k1, byte& k2, byte& k3, byte& k4) {
    word result(0x00000000);
    word temp;
    temp = kto_ulong();
    // K1 temp <<= 24;
    result |= temp;
    temp = kto_ulong();
    // K2 temp <<= 16;
    result |= temp;
    temp = kto_ulong();
    // K3 temp <<= 8;
    result |= temp;
    temp = kto_ulong();
    // K4 result |= temp;
    return result;
    }
    /** * 按字节 循环左移一位 * 即把[a0, a1, a2, a3]变成[a1, a2, a3, a0] */ word RotWord(word& rw) {
    word high = rw << 8;
    word low = rw >> 24;
    return high | low;
    }
    /** * 对输入word中的每一个字节进行S-盒变换 */ word SubWord(word& sw) {
    word temp;
    for(int i=0;
    i<32;
    i+=8) {
    int row = sw[i+7]*8 + sw[i+6]*4 + sw[i+5]*2 + sw[i+4];
    int col = sw[i+3]*8 + sw[i+2]*4 + sw[i+1]*2 + sw[i];
    byte val = S_Box[row][col];
    for(int j=0;
    j<8;
    ++j) temp[i+j] = val[j];
    }
    return temp;
    }
    /** * 密钥扩展函数 - 对128位密钥进行扩展得到 w[4*(Nr+1)] */ void KeyExpansion(byte key[4*Nk], word w[4*(Nr+1)]) {
    word temp;
    int i = 0;
    // w[]的前4个就是输入的key while(i < Nk) {
    w[i] = Word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]);
    ++i;
    }
    i = Nk;
    while(i < 4*(Nr+1)) {
    temp = w[i-1];
    // 记录前一个word if(i % Nk == 0) w[i] = w[i-Nk] ^ SubWord(RotWord(temp)) ^ Rcon[i/Nk-1];
    else w[i] = w[i-Nk] ^ temp;
    ++i;
    }
    }
    int main() {
    byte key[16] = {
    0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}
    ;
    word w[4*(Nr+1)];
    cout << "KEY IS: ";
    for(int i=0;
    i<16;
    ++i) cout << hex << key[i]to_ulong() << " ";
    cout << endl;
    KeyExpansion(key, w);
    // 测试 for(int i=0;
    i<4*(Nr+1);
    ++i) cout << "w[" << dec << i << "] = " << hex << w[i]to_ulong() << endl;
    return 0;
    }

测试输出结果:

2)加密

根据 AES 加密的整体流程图(本文开头),伪代码如下:

从伪代码描述中可以看出,AES 加密时涉及到的子程序有SubBytes()、ShiftRows()、MixColumns()和AddRoundKey()。下面我们一个一个进行介绍:

① S盒变换-SubBytes()

在密钥扩展部分已经讲过了,S盒是一个 16 行 16 列的表,表中每个元素都是一个字节。S盒变换很简单:函数SubBytes()接受一个 4x4 的字节矩阵作为输入,对其中的每个字节,前四位组成十六进制数 x 作为行号,后四位组成的十六进制数 y 作为列号,查找表中对应的值替换原来位置上的字节。

② 行变换-ShiftRows()

行变换也很简单,它仅仅是将矩阵的每一行以字节为单位循环移位:第一行不变,第二行左移一位,第三行左移两位,第四行左移三位。如下图所示:

③ 列变换-MixColumns()

函数MixColumns()同样接受一个 4x4 的字节矩阵作为输入,并对矩阵进行逐列变换,变换方式如下:

注意公式中用到的乘法是伽罗华域(GF,有限域)上的乘法,高级加密标准文档 fips-197 上有讲,如果还是不懂,请自行Google。

④ 与扩展密钥的异或-AddRoundKey()

扩展密钥只参与了这一步。根据当前加密的轮数,用w[]中的 4 个扩展密钥与矩阵的 4 个列进行按位异或。如下图:

好了,到这里 AES 加密的各个部分就讲完了。算法实现的 C++ 源码在文章后面第三部分。

3)解密

根据 AES 解密的整体流程图(本文开头),伪代码如下:

从伪代码可以看出,我们需要分别实现 S 盒变换、行变换和列变换的逆变换InvShiftRows()、InvSubBytes()和InvMixColumns()。下面就简单的讲一下这三个逆变换:

① 逆行变换-InvShiftRows()

上面讲到ShiftRows()是对矩阵的每一行进行循环左移,所以InvShiftRows()是对矩阵每一行进行循环右移。

② 逆 S 盒变换-InvSubBytes()

与 S 盒变换一样,也是查表,查表的方式也一样,只不过查的是另外一个置换表(S-Box的逆表)。

③ 逆列变换-InvMixColumns()

与列变换的方式一样,只不过计算公式的系数矩阵发生了变化。如下图:

好了,AES 解密到这里也讲完了。只要写出三个逆变换的函数,然后根据伪代码就很容易实现 AES 解密算法了。

三、C++实现

下面我用 C++ 实现 AES 的加密和解密算法,并实现了对文件的加密和解密。这里我使用 C++ STL 的bitset定义了两个类型:byte和word。需要提到的是,对于有限域上的乘法,我们既可以通过查表(6个结果表),也可以写一个函数来实现。当然,查表的效率会更高,但考虑到贴代码,这里我就用一个函数来实现的。

下面是 AES-128 对一个 128 位数据加密和解密的源代码:

    /************************************************************************* > File Name: AEScpp > Author: SongLee > E-mail: lisongshine@qqcom > Created Time: 2014年12月12日 星期五 20时15分50秒 > Personal Blog: http://songleegithubcom ************************************************************************/ #include <iostream> #include <bitset> #include <string> using namespace std;
    typedef bitset<8> byte;
    typedef bitset<32> word;
    const int Nr = 10;
    // AES-128需要 10 轮加密 const int Nk = 4;
    // Nk 表示输入密钥的 word 个数 byte S_Box[16][16] = {
    {
    0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76}
    , {
    0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0}
    , {
    0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15}
    , {
    0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75}
    , {
    0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84}
    , {
    0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF}
    , {
    0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8}
    , {
    0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2}
    , {
    0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73}
    , {
    0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB}
    , {
    0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79}
    , {
    0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08}
    , {
    0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A}
    , {
    0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E}
    , {
    0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF}
    , {
    0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16}
    }
    ;
    byte Inv_S_Box[16][16] = {
    {
    0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB}
    , {
    0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB}
    , {
    0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E}
    , {
    0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25}
    , {
    0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92}
    , {
    0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84}
    , {
    0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06}
    , {
    0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B}
    , {
    0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73}
    , {
    0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E}
    , {
    0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B}
    , {
    0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4}
    , {
    0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F}
    , {
    0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF}
    , {
    0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61}
    , {
    0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D}
    }
    ;
    // 轮常数,密钥扩展中用到。(AES-128只需要10轮) word Rcon[10] = {
    0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000}
    ;
    /**********************************************************************/ /* */ /* AES算法实现 */ /* */ /**********************************************************************/ /******************************下面是加密的变换函数**********************/ /** * S盒变换 - 前4位为行号,后4位为列号 */ void SubBytes(byte mtx[4*4]) {
    for(int i=0;
    i<16;
    ++i) {
    int row = mtx[i][7]*8 + mtx[i][6]*4 + mtx[i][5]*2 + mtx[i][4];
    int col = mtx[i][3]*8 + mtx[i][2]*4 + mtx[i][1]*2 + mtx[i][0];
    mtx[i] = S_Box[row][col];
    }
    }
    /** * 行变换 - 按字节循环移位 */ void ShiftRows(byte mtx[4*4]) {
    // 第二行循环左移一位 byte temp = mtx[4];
    for(int i=0;
    i<3;
    ++i) mtx[i+4] = mtx[i+5];
    mtx[7] = temp;
    // 第三行循环左移两位 for(int i=0;
    i<2;
    ++i) {
    temp = mtx[i+8];
    mtx[i+8] = mtx[i+10];
    mtx[i+10] = temp;
    }
    // 第四行循环左移三位 temp = mtx[15];
    for(int i=3;
    i>0;
    --i) mtx[i+12] = mtx[i+11];
    mtx[12] = temp;
    }
    /** * 有限域上的乘法 GF(2^8) */ byte GFMul(byte a, byte b) {
    byte p = 0;
    byte hi_bit_set;
    for (int counter = 0;
    counter < 8;
    counter++) {
    if ((b & byte(1)) != 0) {
    p ^= a;
    }
    hi_bit_set = (byte) (a & byte(0x80));
    a <<= 1;
    if (hi_bit_set != 0) {
    a ^= 0x1b;
    /* x^8 + x^4 + x^3 + x + 1 */ }
    b >>= 1;
    }
    return p;
    }
    /** * 列变换 */ void MixColumns(byte mtx[4*4]) {
    byte arr[4];
    for(int i=0;
    i<4;
    ++i) {
    for(int j=0;
    j<4;
    ++j) arr[j] = mtx[i+j*4];
    mtx[i] = GFMul(0x02, arr[0]) ^ GFMul(0x03, arr[1]) ^ arr[2] ^ arr[3];
    mtx[i+4] = arr[0] ^ GFMul(0x02, arr[1]) ^ GFMul(0x03, arr[2]) ^ arr[3];
    mtx[i+8] = arr[0] ^ arr[1] ^ GFMul(0x02, arr[2]) ^ GFMul(0x03, arr[3]);
    mtx[i+12] = GFMul(0x03, arr[0]) ^ arr[1] ^ arr[2] ^ GFMul(0x02, arr[3]);
    }
    }
    /** * 轮密钥加变换 - 将每一列与扩展密钥进行异或 */ void AddRoundKey(byte mtx[4*4], word k[4]) {
    for(int i=0;
    i<4;
    ++i) {
    word k1 = k[i] >> 24;
    word k2 = (k[i] << 8) >> 24;
    word k3 = (k[i] << 16) >> 24;
    word k4 = (k[i] << 24) >> 24;
    mtx[i] = mtx[i] ^ byte(kto_ulong());
    mtx[i+4] = mtx[i+4] ^ byte(kto_ulong());
    mtx[i+8] = mtx[i+8] ^ byte(kto_ulong());
    mtx[i+12] = mtx[i+12] ^ byte(kto_ulong());
    }
    }
    /**************************下面是解密的逆变换函数***********************/ /** * 逆S盒变换 */ void InvSubBytes(byte mtx[4*4]) {
    for(int i=0;
    i<16;
    ++i) {
    int row = mtx[i][7]*8 + mtx[i][6]*4 + mtx[i][5]*2 + mtx[i][4];
    int col = mtx[i][3]*8 + mtx[i][2]*4 + mtx[i][1]*2 + mtx[i][0];
    mtx[i] = Inv_S_Box[row][col];
    }
    }
    /** * 逆行变换 - 以字节为单位循环右移 */ void InvShiftRows(byte mtx[4*4]) {
    // 第二行循环右移一位 byte temp = mtx[7];
    for(int i=3;
    i>0;
    --i) mtx[i+4] = mtx[i+3];
    mtx[4] = temp;
    // 第三行循环右移两位 for(int i=0;
    i<2;
    ++i) {
    temp = mtx[i+8];
    mtx[i+8] = mtx[i+10];
    mtx[i+10] = temp;
    }
    // 第四行循环右移三位 temp = mtx[12];
    for(int i=0;
    i<3;
    ++i) mtx[i+12] = mtx[i+13];
    mtx[15] = temp;
    }
    void InvMixColumns(byte mtx[4*4]) {
    byte arr[4];
    for(int i=0;
    i<4;
    ++i) {
    for(int j=0;
    j<4;
    ++j) arr[j] = mtx[i+j*4];
    mtx[i] = GFMul(0x0e, arr[0]) ^ GFMul(0x0b, arr[1]) ^ GFMul(0x0d, arr[2]) ^ GFMul(0x09, arr[3]);
    mtx[i+4] = GFMul(0x09, arr[0]) ^ GFMul(0x0e, arr[1]) ^ GFMul(0x0b, arr[2]) ^ GFMul(0x0d, arr[3]);
    mtx[i+8] = GFMul(0x0d, arr[0]) ^ GFMul(0x09, arr[1]) ^ GFMul(0x0e, arr[2]) ^ GFMul(0x0b, arr[3]);
    mtx[i+12] = GFMul(0x0b, arr[0]) ^ GFMul(0x0d, arr[1]) ^ GFMul(0x09, arr[2]) ^ GFMul(0x0e, arr[3]);
    }
    }
    /******************************下面是密钥扩展部分***********************/ /** * 将4个 byte 转换为一个 word */ word Word(byte& k1, byte& k2, byte& k3, byte& k4) {
    word result(0x00000000);
    word temp;
    temp = kto_ulong();
    // K1 temp <<= 24;
    result |= temp;
    temp = kto_ulong();
    // K2 temp <<= 16;
    result |= temp;
    temp = kto_ulong();
    // K3 temp <<= 8;
    result |= temp;
    temp = kto_ulong();
    // K4 result |= temp;
    return result;
    }
    /** * 按字节 循环左移一位 * 即把[a0, a1, a2, a3]变成[a1, a2, a3, a0] */ word RotWord(word& rw) {
    word high = rw << 8;
    word low = rw >> 24;
    return high | low;
    }
    /** * 对输入word中的每一个字节进行S-盒变换 */ word SubWord(word& sw) {
    word temp;
    for(int i=0;
    i<32;
    i+=8) {
    int row = sw[i+7]*8 + sw[i+6]*4 + sw[i+5]*2 + sw[i+4];
    int col = sw[i+3]*8 + sw[i+2]*4 + sw[i+1]*2 + sw[i];
    byte val = S_Box[row][col];
    for(int j=0;
    j<8;
    ++j) temp[i+j] = val[j];
    }
    return temp;
    }
    /** * 密钥扩展函数 - 对128位密钥进行扩展得到 w[4*(Nr+1)] */ void KeyExpansion(byte key[4*Nk], word w[4*(Nr+1)]) {
    word temp;
    int i = 0;
    // w[]的前4个就是输入的key while(i < Nk) {
    w[i] = Word(key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]);
    ++i;
    }
    i = Nk;
    while(i < 4*(Nr+1)) {
    temp = w[i-1];
    // 记录前一个word if(i % Nk == 0) w[i] = w[i-Nk] ^ SubWord(RotWord(temp)) ^ Rcon[i/Nk-1];
    else w[i] = w[i-Nk] ^ temp;
    ++i;
    }
    }
    /******************************下面是加密和解密函数**************************/ /** * 加密 */ void encrypt(byte in[4*4], word w[4*(Nr+1)]) {
    word key[4];
    for(int i=0;
    i<4;
    ++i) key[i] = w[i];
    AddRoundKey(in, key);
    for(int round=1;
    round<Nr;
    ++round) {
    SubBytes(in);
    ShiftRows(in);
    MixColumns(in);
    for(int i=0;
    i<4;
    ++i) key[i] = w[4*round+i];
    AddRoundKey(in, key);
    }
    SubBytes(in);
    ShiftRows(in);
    for(int i=0;
    i<4;
    ++i) key[i] = w[4*Nr+i];
    AddRoundKey(in, key);
    }
    /** * 解密 */ void decrypt(byte in[4*4], word w[4*(Nr+1)]) {
    word key[4];
    for(int i=0;
    i<4;
    ++i) key[i] = w[4*Nr+i];
    AddRoundKey(in, key);
    for(int round=Nr-1;
    round>0;
    --round) {
    InvShiftRows(in);
    InvSubBytes(in);
    for(int i=0;
    i<4;
    ++i) key[i] = w[4*round+i];
    AddRoundKey(in, key);
    InvMixColumns(in);
    }
    InvShiftRows(in);
    InvSubBytes(in);
    for(int i=0;
    i<4;
    ++i) key[i] = w[i];
    AddRoundKey(in, key);
    }
    /**********************************************************************/ /* */ /* 测试 */ /* */ /**********************************************************************/ int main() {
    byte key[16] = {
    0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6, 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c}
    ;
    byte plain[16] = {
    0x32, 0x88, 0x31, 0xe0, 0x43, 0x5a, 0x31, 0x37, 0xf6, 0x30, 0x98, 0x07, 0xa8, 0x8d, 0xa2, 0x34}
    ;
    // 输出密钥 cout << "密钥是:";
    for(int i=0;
    i<16;
    ++i) cout << hex << key[i]to_ulong() << " ";
    cout << endl;
    word w[4*(Nr+1)];
    KeyExpansion(key, w);
    // 输出待加密的明文 cout << endl << "待加密的明文:"<<endl;
    for(int i=0;
    i<16;
    ++i) {
    cout << hex << plain[i]to_ulong() << " ";
    if((i+1)%4 == 0) cout << endl;
    }
    cout << endl;
    // 加密,输出密文 encrypt(plain, w);
    cout << "加密后的密文:"<<endl;
    for(int i=0;
    i<16;
    ++i) {
    cout << hex << plain[i]to_ulong() << " ";
    if((i+1)%4 == 0) cout << endl;
    }
    cout << endl;
    // 解密,输出明文 decrypt(plain, w);
    cout << "解密后的明文:"<<endl;
    for(int i=0;
    i<16;
    ++i) {
    cout << hex << plain[i]to_ulong() << " ";
    if((i+1)%4 == 0) cout << endl;
    }
    cout << endl;
    return 0;
    }

测试用例如下图:

测试结果截图:

可见,测试结果和预期输出相同,表明对数据的加密和解密成功!!!

下面我们来写 AES 对文件的加密和解密,在对 128 位的数据加解密成功以后,对文件的加解密就很简单了!只需要每次读 128 位,加密以后,将 128 位的密文写入另外一个文件…如此循环,直到文件尾。下面是对一张图片进行 AES 加密和解密的测试代码(效率先不管了,有时间我再优化):

    //#include <fstream> typedef bitset<8> byte;
    typedef bitset<32> word;
    /** * 将一个char字符数组转化为二进制 * 存到一个 byte 数组中 */ void charToByte(byte out[16], const char s[16]) {
    for(int i=0;
    i<16;
    ++i) for(int j=0;
    j<8;
    ++j) out[i][j]= ((s[i]>>j) & 1);
    }
    /** * 将连续的128位分成16组,存到一个 byte 数组中 */ void divideToByte(byte out[16], bitset<128>& data) {
    bitset<128> temp;
    for(int i=0;
    i<16;
    ++i) {
    temp = (data << 8*i) >> 120;
    out[i] = tempto_ulong();
    }
    }
    /** * 将16个 byte 合并成连续的128位 */ bitset<128> mergeByte(byte in[16]) {
    bitset<128> res;
    resreset();
    // 置0 bitset<128> temp;
    for(int i=0;
    i<16;
    ++i) {
    temp = in[i]to_ulong();
    temp <<= 8*(15-i);
    res |= temp;
    }
    return res;
    }
    int main() {
    string keyStr = "abcdefghijklmnop";
    byte key[16];
    charToByte(key, keyStrc_str());
    // 密钥扩展 word w[4*(Nr+1)];
    KeyExpansion(key, w);
    bitset<128> data;
    byte plain[16];
    // 将文件 flowerjpg 加密到 ciphertxt 中 ifstream in;
    ofstream out;
    inopen("D://flowerjpg", ios::binary);
    outopen("D://ciphertxt", ios::binary);
    while(inread((char*)&data, sizeof(data))) {
    divideToByte(plain, data);
    encrypt(plain, w);
    data = mergeByte(plain);
    outwrite((char*)&data, sizeof(data));
    datareset();
    // 置0 }
    inclose();
    outclose();
    // 解密 ciphertxt,并写入图片 flowerjpg inopen("D://ciphertxt", ios::binary);
    outopen("D://flowerjpg", ios::binary);
    while(inread((char*)&data, sizeof(data))) {
    divideToByte(plain, data);
    decrypt(plain, w);
    data = mergeByte(plain);
    outwrite((char*)&data, sizeof(data));
    datareset();
    // 置0 }
    inclose();
    outclose();
    return 0;
    }

有限域 GF(28) 上的乘法改用查表的方式实现,AES的加密速度马上提升 80% 以上,所以建议最好使用查表的方式。下面是 AES 算法中用到的 6 个乘法结果表:

    byte Mul_02[256] = {
    0x00,0x02,0x04,0x06,0x08,0x0a,0x0c,0x0e,0x10,0x12,0x14,0x16,0x18,0x1a,0x1c,0x1e, 0x20,0x22,0x24,0x26,0x28,0x2a,0x2c,0x2e,0x30,0x32,0x34,0x36,0x38,0x3a,0x3c,0x3e, 0x40,0x42,0x44,0x46,0x48,0x4a,0x4c,0x4e,0x50,0x52,0x54,0x56,0x58,0x5a,0x5c,0x5e, 0x60,0x62,0x64,0x66,0x68,0x6a,0x6c,0x6e,0x70,0x72,0x74,0x76,0x78,0x7a,0x7c,0x7e, 0x80,0x82,0x84,0x86,0x88,0x8a,0x8c,0x8e,0x90,0x92,0x94,0x96,0x98,0x9a,0x9c,0x9e, 0xa0,0xa2,0xa4,0xa6,0xa8,0xaa,0xac,0xae,0xb0,0xb2,0xb4,0xb6,0xb8,0xba,0xbc,0xbe, 0xc0,0xc2,0xc4,0xc6,0xc8,0xca,0xcc,0xce,0xd0,0xd2,0xd4,0xd6,0xd8,0xda,0xdc,0xde, 0xe0,0xe2,0xe4,0xe6,0xe8,0xea,0xec,0xee,0xf0,0xf2,0xf4,0xf6,0xf8,0xfa,0xfc,0xfe, 0x1b,0x19,0x1f,0x1d,0x13,0x11,0x17,0x15,0x0b,0x09,0x0f,0x0d,0x03,0x01,0x07,0x05, 0x3b,0x39,0x3f,0x3d,0x33,0x31,0x37,0x35,0x2b,0x29,0x2f,0x2d,0x23,0x21,0x27,0x25, 0x5b,0x59,0x5f,0x5d,0x53,0x51,0x57,0x55,0x4b,0x49,0x4f,0x4d,0x43,0x41,0x47,0x45, 0x7b,0x79,0x7f,0x7d,0x73,0x71,0x77,0x75,0x6b,0x69,0x6f,0x6d,0x63,0x61,0x67,0x65, 0x9b,0x99,0x9f,0x9d,0x93,0x91,0x97,0x95,0x8b,0x89,0x8f,0x8d,0x83,0x81,0x87,0x85, 0xbb,0xb9,0xbf,0xbd,0xb3,0xb1,0xb7,0xb5,0xab,0xa9,0xaf,0xad,0xa3,0xa1,0xa7,0xa5, 0xdb,0xd9,0xdf,0xdd,0xd3,0xd1,0xd7,0xd5,0xcb,0xc9,0xcf,0xcd,0xc3,0xc1,0xc7,0xc5, 0xfb,0xf9,0xff,0xfd,0xf3,0xf1,0xf7,0xf5,0xeb,0xe9,0xef,0xed,0xe3,0xe1,0xe7,0xe5 }
    ;
    byte Mul_03[256] = {
    0x00,0x03,0x06,0x05,0x0c,0x0f,0x0a,0x09,0x18,0x1b,0x1e,0x1d,0x14,0x17,0x12,0x11, 0x30,0x33,0x36,0x35,0x3c,0x3f,0x3a,0x39,0x28,0x2b,0x2e,0x2d,0x24,0x27,0x22,0x21, 0x60,0x63,0x66,0x65,0x6c,0x6f,0x6a,0x69,0x78,0x7b,0x7e,0x7d,0x74,0x77,0x72,0x71, 0x50,0x53,0x56,0x55,0x5c,0x5f,0x5a,0x59,0x48,0x4b,0x4e,0x4d,0x44,0x47,0x42,0x41, 0xc0,0xc3,0xc6,0xc5,0xcc,0xcf,0xca,0xc9,0xd8,0xdb,0xde,0xdd,0xd4,0xd7,0xd2,0xd1, 0xf0,0xf3,0xf6,0xf5,0xfc,0xff,0xfa,0xf9,0xe8,0xeb,0xee,0xed,0xe4,0xe7,0xe2,0xe1, 0xa0,0xa3,0xa6,0xa5,0xac,0xaf,0xaa,0xa9,0xb8,0xbb,0xbe,0xbd,0xb4,0xb7,0xb2,0xb1, 0x90,0x93,0x96,0x95,0x9c,0x9f,0x9a,0x99,0x88,0x8b,0x8e,0x8d,0x84,0x87,0x82,0x81, 0x9b,0x98,0x9d,0x9e,0x97,0x94,0x91,0x92,0x83,0x80,0x85,0x86,0x8f,0x8c,0x89,0x8a, 0xab,0xa8,0xad,0xae,0xa7,0xa4,0xa1,0xa2,0xb3,0xb0,0xb5,0xb6,0xbf,0xbc,0xb9,0xba, 0xfb,0xf8,0xfd,0xfe,0xf7,0xf4,0xf1,0xf2,0xe3,0xe0,0xe5,0xe6,0xef,0xec,0xe9,0xea, 0xcb,0xc8,0xcd,0xce,0xc7,0xc4,0xc1,0xc2,0xd3,0xd0,0xd5,0xd6,0xdf,0xdc,0xd9,0xda, 0x5b,0x58,0x5d,0x5e,0x57,0x54,0x51,0x52,0x43,0x40,0x45,0x46,0x4f,0x4c,0x49,0x4a, 0x6b,0x68,0x6d,0x6e,0x67,0x64,0x61,0x62,0x73,0x70,0x75,0x76,0x7f,0x7c,0x79,0x7a, 0x3b,0x38,0x3d,0x3e,0x37,0x34,0x31,0x32,0x23,0x20,0x25,0x26,0x2f,0x2c,0x29,0x2a, 0x0b,0x08,0x0d,0x0e,0x07,0x04,0x01,0x02,0x13,0x10,0x15,0x16,0x1f,0x1c,0x19,0x1a }
    ;
    byte Mul_09[256] = {
    0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77, 0x90,0x99,0x82,0x8b,0xb4,0xbd,0xa6,0xaf,0xd8,0xd1,0xca,0xc3,0xfc,0xf5,0xee,0xe7, 0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c, 0xab,0xa2,0xb9,0xb0,0x8f,0x86,0x9d,0x94,0xe3,0xea,0xf1,0xf8,0xc7,0xce,0xd5,0xdc, 0x76,0x7f,0x64,0x6d,0x52,0x5b,0x40,0x49,0x3e,0x37,0x2c,0x25,0x1a,0x13,0x08,0x01, 0xe6,0xef,0xf4,0xfd,0xc2,0xcb,0xd0,0xd9,0xae,0xa7,0xbc,0xb5,0x8a,0x83,0x98,0x91, 0x4d,0x44,0x5f,0x56,0x69,0x60,0x7b,0x72,0x05,0x0c,0x17,0x1e,0x21,0x28,0x33,0x3a, 0xdd,0xd4,0xcf,0xc6,0xf9,0xf0,0xeb,0xe2,0x95,0x9c,0x87,0x8e,0xb1,0xb8,0xa3,0xaa, 0xec,0xe5,0xfe,0xf7,0xc8,0xc1,0xda,0xd3,0xa4,0xad,0xb6,0xbf,0x80,0x89,0x92,0x9b, 0x7c,0x75,0x6e,0x67,0x58,0x51,0x4a,0x43,0x34,0x3d,0x26,0x2f,0x10,0x19,0x02,0x0b, 0xd7,0xde,0xc5,0xcc,0xf3,0xfa,0xe1,0xe8,0x9f,0x96,0x8d,0x84,0xbb,0xb2,0xa9,0xa0, 0x47,0x4e,0x55,0x5c,0x63,0x6a,0x71,0x78,0x0f,0x06,0x1d,0x14,0x2b,0x22,0x39,0x30, 0x9a,0x93,0x88,0x81,0xbe,0xb7,0xac,0xa5,0xd2,0xdb,0xc0,0xc9,0xf6,0xff,0xe4,0xed, 0x0a,0x03,0x18,0x11,0x2e,0x27,0x3c,0x35,0x42,0x4b,0x50,0x59,0x66,0x6f,0x74,0x7d, 0xa1,0xa8,0xb3,0xba,0x85,0x8c,0x97,0x9e,0xe9,0xe0,0xfb,0xf2,0xcd,0xc4,0xdf,0xd6, 0x31,0x38,0x23,0x2a,0x15,0x1c,0x07,0x0e,0x79,0x70,0x6b,0x62,0x5d,0x54,0x4f,0x46 }
    ;
    byte Mul_0b[256] = {
    0x00,0x0b,0x16,0x1d,0x2c,0x27,0x3a,0x31,0x58,0x53,0x4e,0x45,0x74,0x7f,0x62,0x69, 0xb0,0xbb,0xa6,0xad,0x9c,0x97,0x8a,0x81,0xe8,0xe3,0xfe,0xf5,0xc4,0xcf,0xd2,0xd9, 0x7b,0x70,0x6d,0x66,0x57,0x5c,0x41,0x4a,0x23,0x28,0x35,0x3e,0x0f,0x04,0x19,0x12, 0xcb,0xc0,0xdd,0xd6,0xe7,0xec,0xf1,0xfa,0x93,0x98,0x85,0x8e,0xbf,0xb4,0xa9,0xa2, 0xf6,0xfd,0xe0,0xeb,0xda,0xd1,0xcc,0xc7,0xae,0xa5,0xb8,0xb3,0x82,0x89,0x94,0x9f, 0x46,0x4d,0x50,0x5b,0x6a,0x61,0x7c,0x77,0x1e,0x15,0x08,0x03,0x32,0x39,0x24,0x2f, 0x8d,0x86,0x9b,0x90,0xa1,0xaa,0xb7,0xbc,0xd5,0xde,0xc3,0xc8,0xf9,0xf2,0xef,0xe4, 0x3d,0x36,0x2b,0x20,0x11,0x1a,0x07,0x0c,0x65,0x6e,0x73,0x78,0x49,0x42,0x5f,0x54, 0xf7,0xfc,0xe1,0xea,0xdb,0xd0,0xcd,0xc6,0xaf,0xa4,0xb9,0xb2,0x83,0x88,0x95,0x9e, 0x47,0x4c,0x51,0x5a,0x6b,0x60,0x7d,0x76,0x1f,0x14,0x09,0x02,0x33,0x38,0x25,0x2e, 0x8c,0x87,0x9a,0x91,0xa0,0xab,0xb6,0xbd,0xd4,0xdf,0xc2,0xc9,0xf8,0xf3,0xee,0xe5, 0x3c,0x37,0x2a,0x21,0x10,0x1b,0x06,0x0d,0x64,0x6f,0x72,0x79,0x48,0x43,0x5e,0x55, 0x01,0x0a,0x17,0x1c,0x2d,0x26,0x3b,0x30,0x59,0x52,0x4f,0x44,0x75,0x7e,0x63,0x68, 0xb1,0xba,0xa7,0xac,0x9d,0x96,0x8b,0x80,0xe9,0xe2,0xff,0xf4,0xc5,0xce,0xd3,0xd8, 0x7a,0x71,0x6c,0x67,0x56,0x5d,0x40,0x4b,0x22,0x29,0x34,0x3f,0x0e,0x05,0x18,0x13, 0xca,0xc1,0xdc,0xd7,0xe6,0xed,0xf0,0xfb,0x92,0x99,0x84,0x8f,0xbe,0xb5,0xa8,0xa3 }
    ;
    byte Mul_0d[256] = {
    0x00,0x0d,0x1a,0x17,0x34,0x39,0x2e,0x23,0x68,0x65,0x72,0x7f,0x5c,0x51,0x46,0x4b, 0xd0,0xdd,0xca,0xc7,0xe4,0xe9,0xfe,0xf3,0xb8,0xb5,0xa2,0xaf,0x8c,0x81,0x96,0x9b, 0xbb,0xb6,0xa1,0xac,0x8f,0x82,0x95,0x98,0xd3,0xde,0xc9,0xc4,0xe7,0xea,0xfd,0xf0, 0x6b,0x66,0x71,0x7c,0x5f,0x52,0x45,0x48,0x03,0x0e,0x19,0x14,0x37,0x3a,0x2d,0x20, 0x6d,0x60,0x77,0x7a,0x59,0x54,0x43,0x4e,0x05,0x08,0x1f,0x12,0x31,0x3c,0x2b,0x26, 0xbd,0xb0,0xa7,0xaa,0x89,0x84,0x93,0x9e,0xd5,0xd8,0xcf,0xc2,0xe1,0xec,0xfb,0xf6, 0xd6,0xdb,0xcc,0xc1,0xe2,0xef,0xf8,0xf5,0xbe,0xb3,0xa4,0xa9,0x8a,0x87,0x90,0x9d, 0x06,0x0b,0x1c,0x11,0x32,0x3f,0x28,0x25,0x6e,0x63,0x74,0x79,0x5a,0x57,0x40,0x4d, 0xda,0xd7,0xc0,0xcd,0xee,0xe3,0xf4,0xf9,0xb2,0xbf,0xa8,0xa5,0x86,0x8b,0x9c,0x91, 0x0a,0x07,0x10,0x1d,0x3e,0x33,0x24,0x29,0x62,0x6f,0x78,0x75,0x56,0x5b,0x4c,0x41, 0x61,0x6c,0x7b,0x76,0x55,0x58,0x4f,0x42,0x09,0x04,0x13,0x1e,0x3d,0x30,0x27,0x2a, 0xb1,0xbc,0xab,0xa6,0x85,0x88,0x9f,0x92,0xd9,0xd4,0xc3,0xce,0xed,0xe0,0xf7,0xfa, 0xb7,0xba,0xad,0xa0,0x83,0x8e,0x99,0x94,0xdf,0xd2,0xc5,0xc8,0xeb,0xe6,0xf1,0xfc, 0x67,0x6a,0x7d,0x70,0x53,0x5e,0x49,0x44,0x0f,0x02,0x15,0x18,0x3b,0x36,0x21,0x2c, 0x0c,0x01,0x16,0x1b,0x38,0x35,0x22,0x2f,0x64,0x69,0x7e,0x73,0x50,0x5d,0x4a,0x47, 0xdc,0xd1,0xc6,0xcb,0xe8,0xe5,0xf2,0xff,0xb4,0xb9,0xae,0xa3,0x80,0x8d,0x9a,0x97 }
    ;
    byte Mul_0e[256] = {
    0x00,0x0e,0x1c,0x12,0x38,0x36,0x24,0x2a,0x70,0x7e,0x6c,0x62,0x48,0x46,0x54,0x5a, 0xe0,0xee,0xfc,0xf2,0xd8,0xd6,0xc4,0xca,0x90,0x9e,0x8c,0x82,0xa8,0xa6,0xb4,0xba, 0xdb,0xd5,0xc7,0xc9,0xe3,0xed,0xff,0xf1,0xab,0xa5,0xb7,0xb9,0x93,0x9d,0x8f,0x81, 0x3b,0x35,0x27,0x29,0x03,0x0d,0x1f,0x11,0x4b,0x45,0x57,0x59,0x73,0x7d,0x6f,0x61, 0xad,0xa3,0xb1,0xbf,0x95,0x9b,0x89,0x87,0xdd,0xd3,0xc1,0xcf,0xe5,0xeb,0xf9,0xf7, 0x4d,0x43,0x51,0x5f,0x75,0x7b,0x69,0x67,0x3d,0x33,0x21,0x2f,0x05,0x0b,0x19,0x17, 0x76,0x78,0x6a,0x64,0x4e,0x40,0x52,0x5c,0x06,0x08,0x1a,0x14,0x3e,0x30,0x22,0x2c, 0x96,0x98,0x8a,0x84,0xae,0xa0,0xb2,0xbc,0xe6,0xe8,0xfa,0xf4,0xde,0xd0,0xc2,0xcc, 0x41,0x4f,0x5d,0x53,0x79,0x77,0x65,0x6b,0x31,0x3f,0x2d,0x23,0x09,0x07,0x15,0x1b, 0xa1,0xaf,0xbd,0xb3,0x99,0x97,0x85,0x8b,0xd1,0xdf,0xcd,0xc3,0xe9,0xe7,0xf5,0xfb, 0x9a,0x94,0x86,0x88,0xa2,0xac,0xbe,0xb0,0xea,0xe4,0xf6,0xf8,0xd2,0xdc,0xce,0xc0, 0x7a,0x74,0x66,0x68,0x42,0x4c,0x5e,0x50,0x0a,0x04,0x16,0x18,0x32,0x3c,0x2e,0x20, 0xec,0xe2,0xf0,0xfe,0xd4,0xda,0xc8,0xc6,0x9c,0x92,0x80,0x8e,0xa4,0xaa,0xb8,0xb6, 0x0c,0x02,0x10,0x1e,0x34,0x3a,0x28,0x26,0x7c,0x72,0x60,0x6e,0x44,0x4a,0x58,0x56, 0x37,0x39,0x2b,0x25,0x0f,0x01,0x13,0x1d,0x47,0x49,0x5b,0x55,0x7f,0x71,0x63,0x6d, 0xd7,0xd9,0xcb,0xc5,0xef,0xe1,0xf3,0xfd,0xa7,0xa9,0xbb,0xb5,0x9f,0x91,0x83,0x8d }
    ;

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关热词搜索: c++加密解密算法aes c++ aes加密算法 aes加