虚位以待(AD)
虚位以待(AD)
首页 > 软件编程 > C/C++编程 > C++中的多态与虚函数的内部实现方法

C++中的多态与虚函数的内部实现方法
类别:C/C++编程   作者:码皇   来源:互联网   点击:

下面小编就为大家带来一篇C++中的多态与虚函数的内部实现方法。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

1、什么是多态

多态性可以简单概括为“一个接口,多种行为”。

也就是说,向不同的对象发送同一个消息, 不同的对象在接收时会产生不同的行为(即方法)。也就是说,每个对象可以用自己的方式去响应共同的消息。所谓消息,就是调用函数,不同的行为就是指不同的实现,即执行不同的函数。这是一种泛型技术,即用相同的代码实现不同的动作。这体现了面向对象编程的优越性。

多态分为两种:

(1)编译时多态:主要通过函数的重载和模板来实现。

(2)运行时多态:主要通过虚函数来实现。

2、几个相关概念

(1)覆盖、重写(override)

override指基类的某个成员函数为虚函数,派生类又定义一成员函数,除函数体的其余部分都与基类的成员函数相同。注意,如果只是函数名相同,形参或返回类型不同的话,就不能称为override,而是hide。

(2)重载(overload)

指同一个作用域出生多个函数名相同,但是形参不同的函数。编译器在编译的时候,通过实参的个数和类型,选择最终调用的函数。

(3)隐藏(hide)

分为两种:

1)局部变量或者函数隐藏了全局变量或者函数
2)派生类拥有和基类同名的成员函数或成员变量。

产生的结果:使全局或基类的变量、函数不可见。

3、几个简单的例子

    /****************************************************************************************************** * File:PolymorphismTest * Introduction:测试多态的一些特性。 * Author:CoderCong* Date:20141114 * LastModifiedDate:20160113 *******************************************************************************************************/ #include "stdafx.h" #include <iostream> using namespace std;
    class A {
    public: void foo() {
    printf("1n");
    }
    virtual void fun() {
    printf("2n");
    }
    }
    ;
    class B : public A {
    public: void foo() //由于基类的foo函数并不是虚函数,所以是隐藏,而不是重写 {
    printf("3n");
    }
    void fun() //重写 {
    printf("4n");
    }
    }
    ;
    int main(void) {
    A a;
    B b;
    A *p = &a;
    p->foo();
    //输出1。 p->fun();
    //输出2。 p = &b;
    p->foo();
    //输出1。因为p是基类指针,p->foo指向一个具有固定偏移量的函数。也就是基类函数 p->fun();
    //输出4。多态。虽然p是基类指针,但实际上指向的是一个子类对象。p->fun指向的是一个虚函数。按照动态类型,调用子类函数 return 0;
    }

4、运行时多态以及虚函数的内部实现

看了上边几个简单的例子,我恍然大悟,原来这就是多态,这么简单,明白啦!

好,那我们再看一个例子:

    class A {
    public: virtual void FunA()   {
        cout << "FunA1" << endl;
      }
    ;
      virtual void FunAA()   {
        cout << "FunA2" << endl;
      }
    }
    ;
    class B {
    public: virtual void FunB()   {
        cout << "FunB" << endl;
      }
    }
    ;
    class C :public A, public B {
    public:   virtual void FunA()   {
        cout << "FunA1C" << endl;
      }
    ;
    }
    ;
    int _tmain(int argc, _TCHAR* argv[]) {
      C objC;
      A *pA = &objC;
      B *pB = &objC;
      C *pC = &objC;
      printf("%d %dn", &objC, objC);
      printf("%d %dn", pA, *pA);
      printf("%d %dn", pB, *pB);
      printf("%d %dn", pC, *pC);
      return 0;
    }

运行结果:

5241376 1563032

5241376 1563032

5241380 1563256

5241376 1563032

细心的同志一定发现了pB出了问题,为什么明明都是指向objC的指针,pB跟别人的值都不一样呢?

是不是编译器出了问题呢?

当然不是!我们先讲结论:

(1)每一个含有虚函数的类,都会生成虚表(virtual table)。这个表,记录了对象的动态类型,决定了执行此对象的虚成员函数的时候,真正执行的那一个成员函数。

(2)对于有多个基类的类对象,会有多个虚表,每一个基类对应一个虚表,同时,虚表的顺序和继承时的顺序相同。

(3)在每一个类对象所占用的内存中,虚指针位于最前边,每个虚指针指向对应的虚表。

先从简单的单个基类说起:

    class A {
    public:   virtual void FunA()   {
        cout << "FunA1" << endl;
      }
      virtual void FunA2()   {
        cout << "FunA2" << endl;
      }
    }
    ;
    class C :public A {
      virtual void FunA()   {
        cout << "FunA1C" << endl;
      }
    }
    ;
    int _tmain(int argc, _TCHAR* argv[]) {
      A *pA = new A;
      C *pC = new C;
      typedef void (*Fun)(void);
      Fun fun= (Fun)*((int*)(*(int*)pA));
      fun();
    //pA指向的第一个函数   fun = (Fun)*((int*)(*(int*)pA) +1);
      fun();
    //pA指向的第二个函数      fun = (Fun)*((int*)(*(int*)pC));
      fun();
    //pC指向的第一个函数   fun = (Fun)*((int*)(*(int*)pC) + 1);
      fun();
    //pC指向的第二个函数   return 0;
    }

运行结果:

FunA1
FunA2
FunA1C
FunA2
是不是有点晕?没关系。我一点一点解释:pA对应一个A的对象,我们可以画出这样的一个表:
      
这就是对象*pA的虚表,两个虚函数以声明顺序排列。pA指向对象*pA,则*(int*)pA指向此虚拟表,则(Fun)*((int*)(*(int*)pA))指向FunA,同理,(Fun)*((int*)(*(int*)pA) + 1)指向FunA2。所以,出现了前两个结果。
根据后两个结果, 我们可以推测*pC的虚表如下图所示:
      
也就是说,由于C中的FunA重写(override)了A中的FunA,虚拟表中虚拟函数的地址也被重写了。
就是这样,这就是多态实现的内部机制。
我们再回到最初的问题:为什么*pB出了问题。
根据上边的结论,我们大胆地进行猜测:由于C是由A、B派生而来,所以objC有两个虚拟表,而由于表的顺序,pA、pC都指向了对应于A的虚拟表,而pB则指向了对应于B的虚拟表。做个实验来验证我们的猜想是否正确:
我们不改变A、B、C类,将问题中的main改一下:
    int _tmain(int argc, _TCHAR* argv[]) {
      C objC;
      A *pA = &objA;
      B *pB = &objC;
      C *pC = &objC;
         typedef void (*Fun)(void);
      Fun fun = (Fun)*((int*)(*(int*)pC));
      fun();
    //第一个表第一个函数   fun = (Fun)*((int*)(*(int*)pC)+1);
      fun();
    //第一个表第二个函数   fun = (Fun)*((int*)(*((int*)pC+1)));
      fun();
    <span style="white-space:pre"> </span>//第二个表第一个函数   fun = (Fun)*((int*)(*(int*)pB));
      fun();
    //pB指向的表的第一个函数   return 0;
    }

哈哈,和我们的猜测完全一致:

FunA1C
FunA2
FunB
FunB
我们可以画出这样的虚函数图:
        
暂且这样理解,编译器执行B *pB = &objC时不是仅仅是赋值,而是做了相应的优化,将pB指向了第二张虚表。
说了这么多,我是只是简单地解释了虚函数的实现原理,可究竟对象的内部的内存布局是怎样的?类数据成员与多个虚表的具体内存布局又是怎样的?编译器是如何在赋值的时候作了优化的呢?我在以后的时间里会讲一下。

以上就是小编为大家带来的C++中的多态与虚函数的内部实现方法全部内容了,希望大家多多支持脚本之家~

相关热词搜索: c 多态与虚函数