虚位以待(AD)
虚位以待(AD)
首页 > 软件编程 > Android编程 > Android4.2.2的Stagefright中编解码器数据流的维护

Android4.2.2的Stagefright中编解码器数据流的维护
类别:Android编程   作者:码皇   来源:互联网   点击:

Android源码版本Version:4 2 2; 硬件平台 全志A31前沿:在前面的博文中,基本提到的是stagefright相关的控制流,具体分析了android架构中的MediaExtractor、AwesomePlayer、StagefrightPlayer、OMXCodec等

 

Android源码版本Version:4.2.2; 硬件平台 全志A31

 

前沿:

在前面的博文中,基本提到的是stagefright相关的控制流,具体分析了android架构中的MediaExtractor、AwesomePlayer、StagefrightPlayer、OMXCodec等的创建,底层OMXNodinstance实例的创建。分析了OMX最底层插件库、编解码器组件的架构以及如何创建属于我们自己的OMX Plugin。

分析源码架构的另一个关键是数据流的分析,从这里开始,我们将对stagefright中的编解码缓存区进行分析:

1.

回到OMXCodec的创建过程的源码:

    status_t AwesomePlayer::initVideoDecoder(uint32_t flags) {
    ....... mVideoSource = OMXCodec::Create( mClient.interface(), mVideoTrack->getFormat(),//提取视频流的格式, mClient:BpOMX;mVideoTrack->getFormat() false, // createEncoder,不创建编码器false mVideoTrack, NULL, flags, USE_SURFACE_ALLOC ? mNativeWindow : NULL);
    //创建一个解码器mVideoSource if (mVideoSource != NULL) {
    int64_t durationUs;
    if (mVideoTrack->getFormat()->findInt64(kKeyDuration, &durationUs)) {
    Mutex::Autolock autoLock(mMiscStateLock);
    if (mDurationUs < 0 || durationUs > mDurationUs) {
    mDurationUs = durationUs;
    }
    }
    status_t err = mVideoSource->start();
    //启动解码器OMXCodec,完成解码器的init初始化操作.............}

在Android4.2.2下Stagefright多媒体架构中的A31的OMX插件和Codec组件 博文我们对于OMXCodec::create已经做了详细的分析,这里来关注mVideoSource->start的相关功能,即OMXCodec::start的处理:

    status_t OMXCodec::start(MetaData *meta) {
    Mutex::Autolock autoLock(mLock);
    ........ return init();
    //进行初始化操作}

这里调用init()的过程,将会进行buffer的申请操作,为后续的流操作打下基础:

    status_t OMXCodec::init() {
    // mLock is held.......... err = allocateBuffers();
    //缓存区的分配 if (err != (status_t)OK) {
    return err;
    }
    if (mQuirks & kRequiresLoadedToIdleAfterAllocation) {
    err = mOMX->sendCommand(mNode, OMX_CommandStateSet, OMX_StateIdle);
    CHECK_EQ(err, (status_t)OK);
    setState(LOADED_TO_IDLE);
    }
    ............}

我们来看allocateBuffers的实现

 

2.关注allocateBuffersOnPort的实现

    status_t OMXCodec::allocateBuffers() {
    status_t err = allocateBuffersOnPort(kPortIndexInput);
    //输入缓存input口分配 if (err != OK) {
    return err;
    }
    return allocateBuffersOnPort(kPortIndexOutput);
    //输出缓存input口分配}

这里分别将对输入和输出口进行Buffer的申请与分配,对于解码器,需要输入口来存储待解码的数据源,需要将解码后的数据源存储到输出口,而这也符合硬件的实现逻辑。以输入缓存区分配为例展开分析:

    status_t OMXCodec::allocateBuffersOnPort(OMX_U32 portIndex) {
    ....... OMX_PARAM_PORTDEFINITIONTYPE def;
    InitOMXParams(&def);
    def.nPortIndex = portIndex;
    //输入口 err = mOMX->getParameter( mNode, OMX_IndexParamPortDefinition, &def, sizeof(def));
    //获取输入口参数到def.......... err = mOMX->allocateBuffer( mNode, portIndex, def.nBufferSize, &buffer, &info.mData);
    ........ info.mBuffer = buffer;
    //获取对应的buffer_id,有保存有底层的buffer的相关信息 info.mStatus = OWNED_BY_US;
    info.mMem = mem;
    info.mMediaBuffer = NULL;
    ........... mPortBuffers[portIndex].push(info);
    //把当前的buffer恢复到mPortBuffers[2]中去

上述过程主要分为:

step1:先是获取底层解码器组件的当前的参数熟悉,一般这些参数都在建立OMX_Codec时完成的初始配置,前一博文中已经提到过。

step2:进行allocateBuffer的处理,这个函数的调用最终交给底层的OMX组件来完成,相关的实现将集成到A31的底层OMX编解码组件的处理流中进行分析。

step3:完成对分配好的buffer信息info,维护在mPortBuffers[0]这个端口中。

上述过程完成了输入与输出的Buffer分配,为后续解码操作buffer打下了基础。

 

3.mediaplay启动播放器

通过start的API调用,进入MediaplayerService::Client,再依次经过stagefrightplayer,AwesomePlayer。触发play的videoevent的发生.

    void AwesomePlayer::postVideoEvent_l(int64_t delayUs) {
    ATRACE_CALL();
    if (mVideoEventPending) {
    return;
    }
    mVideoEventPending = true;
    mQueue.postEventWithDelay(mVideoEvent, delayUs < 0 ? 10000 : delayUs);
    }

根据前一博文的分析可知,该事件对应的处理函数为AwesomePlayer::onVideoEvent(),该部分代码量较大,提取核心内容read的处理进行分析:

    status_t err = mVideoSource->read(&mVideoBuffer, &options);
    //循环读数据实际的OMX_CODEC::read,读取到mVideoBuffer

read的核心是获取可以用于render的视频数据,这表明了read函数主要完成了从视频源读取元数据,并调用解码器完成解码生成可送显的数据。

 

4. read函数的实现

可以想象read函数的应该是一个比较复杂的过程,我们从OMX_Codec的read函数入手来分析:

    status_t OMXCodec::read( MediaBuffer **buffer, const ReadOptions *options) {
    status_t err = OK;
    *buffer = NULL;
    Mutex::Autolock autoLock(mLock);
    drainInputBuffers();
    //buffer,填充数据源 if (mState == EXECUTING) {
    // Otherwise mState == RECONFIGURING and this code will trigger // after the output port is reenabled. fillOutputBuffers();
    }
    }
    ...........}

read的核心逻辑总结为drainInputBuffers()和fillOutputBuffers(),我们对其依次进行深入的分析

 

5. drainInputBuffers()读取待解码的视频数据源到解码器的Inport

这里贴出其较为复杂的处理过程代码,主要分为以下3个部分进行分析:

(1)

    bool OMXCodec::drainInputBuffer(BufferInfo *info) {
    if (mCodecSpecificDataIndex < mCodecSpecificData.size()) {
    CHECK(!(mFlags & kUseSecureInputBuffers));
    const CodecSpecificData *specific = mCodecSpecificData[mCodecSpecificDataIndex];
    size_t size = specific->mSize;
    if (!strcasecmp(MEDIA_MIMETYPE_VIDEO_AVC, mMIME) && !(mQuirks & kWantsNALFragments)) {
    static const uint8_t kNALStartCode[4] = {
    0x00, 0x00, 0x00, 0x01 }
    ;
    CHECK(info->mSize >= specific->mSize + 4);
    size += 4;
    memcpy(info->mData, kNALStartCode, 4);
    memcpy((uint8_t *)info->mData + 4, specific->mData, specific->mSize);
    }
    else {
    CHECK(info->mSize >= specific->mSize);
    memcpy(info->mData, specific->mData, specific->mSize);
    //copy前面的数据字段 }
    mNoMoreOutputData = false;
    CODEC_LOGV(calling emptyBuffer with codec specific data);
    status_t err = mOMX->emptyBuffer( mNode, info->mBuffer, 0, size, OMX_BUFFERFLAG_ENDOFFRAME | OMX_BUFFERFLAG_CODECCONFIG, 0);
    //处理buffer CHECK_EQ(err, (status_t)OK);
    info->mStatus = OWNED_BY_COMPONENT;
    ++mCodecSpecificDataIndex;
    return true;
    }
...............(1)

这部分的内容主要是提取一部分解码器字段,填充到info->mData的存储空间中去。这部分主要基于视频源的格式,如mp4等在创建OXMCodec病configureCodec时就完成了这个mCodecSpecificData字段的添加,应该些解码需要的特殊字段吧。是否需要要看其视频源的格式。获取完这个字段信息后就是正式读取视频源的数据了。

 

(2)

    for (;
    ;
    ) {
    MediaBuffer *srcBuffer;
    if (mSeekTimeUs >= 0) {
    if (mLeftOverBuffer) {
    mLeftOverBuffer->release();
    mLeftOverBuffer = NULL;
    }
    MediaSource::ReadOptions options;
    options.setSeekTo(mSeekTimeUs, mSeekMode);
    mSeekTimeUs = -1;
    mSeekMode = ReadOptions::SEEK_CLOSEST_SYNC;
    mBufferFilled.signal();
    err = mSource->read(&srcBuffer, &options);
    //读取视频源中的真实数据这里是MPEG4Source的read if (err == OK) {
    int64_t targetTimeUs;
    if (srcBuffer->meta_data()->findInt64( kKeyTargetTime, &targetTimeUs) && targetTimeUs >= 0) {
    CODEC_LOGV(targetTimeUs = %lld us, targetTimeUs);
    mTargetTimeUs = targetTimeUs;
    }
    else {
    mTargetTimeUs = -1;
    }
    }
    }
    else if (mLeftOverBuffer) {
    srcBuffer = mLeftOverBuffer;
    mLeftOverBuffer = NULL;
    err = OK;
    }
    else {
    err = mSource->read(&srcBuffer);
    }
    if (err != OK) {
    signalEOS = true;
    mFinalStatus = err;
    mSignalledEOS = true;
    mBufferFilled.signal();
    break;
    }
    if (mFlags & kUseSecureInputBuffers) {
    info = findInputBufferByDataPointer(srcBuffer->data());
    CHECK(info != NULL);
    }
    size_t remainingBytes = info->mSize - offset;
    //buffer中剩余的可以存储视频数据的空间 if (srcBuffer->range_length() > remainingBytes) {
    //当前读取的数据已经达到解码的数据量 if (offset == 0) {
    CODEC_LOGE( Codec'
    s input buffers are too small to accomodate buffer read from source (info->mSize = %d, srcLength = %d), info->mSize, srcBuffer->range_length());
    srcBuffer->release();
    srcBuffer = NULL;
    setState(ERROR);
    return false;
    }
    mLeftOverBuffer = srcBuffer;
    //把没读取的buffer记录下来 break;
    }
    bool releaseBuffer = true;
    if (mFlags & kStoreMetaDataInVideoBuffers) {
    releaseBuffer = false;
    info->mMediaBuffer = srcBuffer;
    }
    if (mFlags & kUseSecureInputBuffers) {
    // Data in info is already provided at this time. releaseBuffer = false;
    CHECK(info->mMediaBuffer == NULL);
    info->mMediaBuffer = srcBuffer;
    }
    else {
    CHECK(srcBuffer->data() != NULL) ;
    memcpy((uint8_t *)info->mData + offset, (const uint8_t *)srcBuffer->data() + srcBuffer->range_offset(), srcBuffer->range_length());
    //copy数据源数据到输入缓存,数据容量srcBuffer->range_length() }
    int64_t lastBufferTimeUs;
    CHECK(srcBuffer->meta_data()->findInt64(kKeyTime, &lastBufferTimeUs));
    CHECK(lastBufferTimeUs >= 0);
    if (mIsEncoder && mIsVideo) {
    mDecodingTimeList.push_back(lastBufferTimeUs);
    }
    if (offset == 0) {
    timestampUs = lastBufferTimeUs;
    }
    offset += srcBuffer->range_length();
    //增加偏移量 if (!strcasecmp(MEDIA_MIMETYPE_AUDIO_VORBIS, mMIME)) {
    CHECK(!(mQuirks & kSupportsMultipleFramesPerInputBuffer));
    CHECK_GE(info->mSize, offset + sizeof(int32_t));
    int32_t numPageSamples;
    if (!srcBuffer->meta_data()->findInt32( kKeyValidSamples, &numPageSamples)) {
    numPageSamples = -1;
    }
    memcpy((uint8_t *)info->mData + offset, &numPageSamples, sizeof(numPageSamples));
    offset += sizeof(numPageSamples);
    }
    if (releaseBuffer) {
    srcBuffer->release();
    srcBuffer = NULL;
    }
    ++n;
    if (!(mQuirks & kSupportsMultipleFramesPerInputBuffer)) {
    break;
    }
    int64_t coalescedDurationUs = lastBufferTimeUs - timestampUs;
    if (coalescedDurationUs > 250000ll) {
    // Don'
    t coalesce more than 250ms worth of encoded data at once. break;
    }
    }
    ...........

该部分是提取视频源数据的关键,主要通过 err = mSource->read(&srcBuffer, &options)来完成,mSource是在创建编解码器传入的,实际是一个对应于视频源格式的一个解析器MediaExtractor。比如在建立MP4的解析器MPEG4Extractor,通过新建一个new MPEG4Source。故最终这里调用的是MPEG4Source的read成员函数,其实际也维护着整个待解码的原始视频流。

我们可以看大在read函数后,会将待解码的数据流以for循环依次读入到底层的buffer空间中,只有当满足当前读取的原始数据片段比底层的input口的buffer剩余空间小srcBuffer->range_length() > remainingBytes,那就可以继续读取,否则直接break后,去进行下一步操作。或者如果一次待解码的数据时张是大于250ms也直接跳出。

这处理体现了处理的高效性。最终视频原始数据存储在info->mData的底层输入空间中。

 

(3)

    err = mOMX->emptyBuffer( mNode, info->mBuffer, 0, offset, flags, timestampUs);

触发底层的解码器组件进行处理。这部分留在后续对A31的底层编解码API操作时进行分析。

6.fillOutputBuffers对输出buffer口的填充,即实现解码过程:

    void OMXCodec::fillOutputBuffers() {
    CHECK_EQ((int)mState, (int)EXECUTING);
    ........... Vector *buffers = &mPortBuffers[kPortIndexOutput];
    输出端口 for (size_t i = 0;
    i < buffers->size();
    ++i) {
    BufferInfo *info = &buffers->editItemAt(i);
    if (info->mStatus == OWNED_BY_US) {
    fillOutputBuffer(&buffers->editItemAt(i));
    }
    }
    }
    void OMXCodec::fillOutputBuffer(BufferInfo *info) {
    CHECK_EQ((int)info->mStatus, (int)OWNED_BY_US);
    if (mNoMoreOutputData) {
    CODEC_LOGV(There is no more output data available, not calling fillOutputBuffer);
    return;
    }
    CODEC_LOGV(Calling fillBuffer on buffer %p, info->mBuffer);
    status_t err = mOMX->fillBuffer(mNode, info->mBuffer);
    if (err != OK) {
    CODEC_LOGE(fillBuffer failed w/ error 0x%08x, err);
    setState(ERROR);
    return;
    }
    info->mStatus = OWNED_BY_COMPONENT;
    }

从上面的代码看来,fillOutputBuffer的实现比drainInputBuffers简单了很多。但相同的是,两者最终都讲控制权交给底层的解码器来完成。

 

7.等待解码数据被fill到outbuffer中,OMXCodecObserver完成回调处理

等待解码完成的这部分内容在read函数中通过以下函数来实现:

    while (mState != ERROR && !mNoMoreOutputData && mFilledBuffers.empty()) {
    if ((err = waitForBufferFilled_l()) != OK) {
    //进入等待buffer被填充 return err;
    }
    }

上述表明,只要mFilledBuffers为空则进入等待填充pthread_cond_timedwait。而这个线程被唤醒是通过底层的组件回调来完成的,回调函数的注册哎底层编解码器Node完成的,实际最终的回调是交给OMXCodecObserver来完成的:

    struct OMXCodecObserver : public BnOMXObserver {
    OMXCodecObserver() {
    }
    void setCodec(const sp &target) {
    mTarget = target;
    }
    // from IOMXObserver virtual void onMessage(const omx_message &msg) {
    sp codec = mTarget.promote();
    if (codec.get() != NULL) {
    Mutex::Autolock autoLock(codec->mLock);
    codec->on_message(msg);
    //OMX_Codec的on_message处理 codec.clear();
    }
    }

最终可以看到是由OMX_Codec->on_message来进行消息的处理,这部分的内容主要包括EMPTY_BUFFER_DONE和FILL_BUFFER_DONE两个message处理,对FILL_BUFFER_DONE完成后的消息回调进行分析:

    void OMXCodec::on_message(const omx_message &msg) {
    if (mState == ERROR) {
    /* * only drop EVENT messages, EBD and FBD are still * processed for bookkeeping purposes */ if (msg.type == omx_message::EVENT) {
    ALOGW(Dropping OMX EVENT message - we'
    re in ERROR state.);
    return;
    }
    }
    switch (msg.type) {
    case omx_message::FILL_BUFFER_DONE://底层回调callback告知当前 .............. mFilledBuffers.push_back(i);
    //当前的输出buffer信息维护在mFilledBuffers mBufferFilled.signal();
    //发出信息用于渲染

可以看到这里对read线程进行了唤醒。

8.提取一个可用的解码后的数据帧

    size_t index = *mFilledBuffers.begin();
    mFilledBuffers.erase(mFilledBuffers.begin());
    BufferInfo *info = &mPortBuffers[kPortIndexOutput].editItemAt(index);
    //从获取解码后的视频源 CHECK_EQ((int)info->mStatus, (int)OWNED_BY_US);
    info->mStatus = OWNED_BY_CLIENT;
    info->mMediaBuffer->add_ref();
    // if (mSkipCutBuffer != NULL) {
    mSkipCutBuffer->submit(info->mMediaBuffer);
    }
    *buffer = info->mMediaBuffer;

获得了线程唤醒后的buffer,从这里获取到输出端口对应的Bufferinfo,作为最终的BufferInfo信息返回给read函数

9

经过5、6、7、8的处理过程,read最终返回可用于显示的mVideoBuffer,接下去就是如何送显的过程了。可以看到下面的代码,将会创建一个渲染器mVideoRenderer来完成这个解码后视频源的显示:

if ((mNativeWindow != NULL) && (mVideoRendererIsPreview || mVideoRenderer == NULL)) {//首次创建渲染器 mVideoRendererIsPreview = false;

initRenderer_l();//初始化渲染器,新建一个AwesomeLocalRenderer }

if (mVideoRenderer != NULL) { mSinceLastDropped++; mVideoRenderer->render(mVideoBuffer);//启动渲染,即显示当前buffer if (!mVideoRenderingStarted) { mVideoRenderingStarted = true; notifyListener_l(MEDIA_INFO, MEDIA_INFO_RENDERING_START); }

}

    void AwesomePlayer::initRenderer_l() {
    ATRACE_CALL();
    if (mNativeWindow == NULL) {
    return;
    }
    sp meta = mVideoSource->getFormat();
    int32_t format;
    const char *component;
    int32_t decodedWidth, decodedHeight;
    CHECK(meta->findInt32(kKeyColorFormat, &format));
    CHECK(meta->findCString(kKeyDecoderComponent, &component));
    CHECK(meta->findInt32(kKeyWidth, &decodedWidth));
    CHECK(meta->findInt32(kKeyHeight, &decodedHeight));
    int32_t rotationDegrees;
    if (!mVideoTrack->getFormat()->findInt32( kKeyRotation, &rotationDegrees)) {
    rotationDegrees = 0;
    }
    mVideoRenderer.clear();
    // Must ensure that mVideoRenderer'
    s destructor is actually executed // before creating a new one. IPCThreadState::self()->flushCommands();
    // Even if set scaling mode fails, we will continue anyway setVideoScalingMode_l(mVideoScalingMode);
    if (USE_SURFACE_ALLOC && !strncmp(component, OMX., 4) && strncmp(component, OMX.google., 11) && strcmp(component, OMX.Nvidia.mpeg2v.decode)) {
    //使用硬件渲染器,除去上述的解码器 // Hardware decoders avoid the CPU color conversion by decoding // directly to ANativeBuffers, so we must use a renderer that // just pushes those buffers to the ANativeWindow. mVideoRenderer = new AwesomeNativeWindowRenderer(mNativeWindow, rotationDegrees);
    //一般是使用硬件渲染机制 }
    else {
    // Other decoders are instantiated locally and as a consequence // allocate their buffers in local address space. This renderer // then performs a color conversion and copy to get the data // into the ANativeBuffer. mVideoRenderer = new AwesomeLocalRenderer(mNativeWindow, meta);
    }
    }

可以看到这里有2个渲染器的创建分支,OMX和OMX.google说明底层的解码器用的是软解码,那么他渲染器也使用所谓的本地渲染器实际是软渲染器。故这里我们使用的是AwesomeNativeWindowRenderer渲染器,其结构如下所述:

    struct AwesomeNativeWindowRenderer : public AwesomeRenderer {
    AwesomeNativeWindowRenderer( const sp &nativeWindow, int32_t rotationDegrees) : mNativeWindow(nativeWindow) {
    applyRotation(rotationDegrees);
    }
    virtual void render(MediaBuffer *buffer) {
    ATRACE_CALL();
    int64_t timeUs;
    CHECK(buffer->meta_data()->findInt64(kKeyTime, &timeUs));
    native_window_set_buffers_timestamp(mNativeWindow.get(), timeUs * 1000);
    status_t err = mNativeWindow->queueBuffer( mNativeWindow.get(), buffer->graphicBuffer().get(), -1);
    //直接使用queuebuffer进行渲染显示 if (err != 0) {
    ALOGE(queueBuffer failed with error %s (%d), strerror(-err), -err);
    return;
    }
    sp metaData = buffer->meta_data();
    metaData->setInt32(kKeyRendered, 1);
    }

不是很复杂,只是实现了AwesomeRenderer渲染接口render。最终调用这个函数来实现对buffer的显示。这里看到很熟悉的queueBuffer,大家可以回看我的博文Android4.2.2 SurfaceFlinger之图形渲染queueBuffer实现和VSYNC的存在感 ,这是通过应用程序的本地窗口mNativeWindow(因为播放器videoview继承了sufaceview,surfaceview类会创建一个本地的surface,其继承了本地窗口类)将当前buffer提交给SurfaceFlinger服务进行显示,具体内容不在展开。

至此我们完成了stagefright下的编解码的数据流的相关操作,程序上复杂主要体现在emptybuffer和fillbuffer为主。当然由于能力有限,在很多细节上也没有进行很详细的分析,也希望大家多交流,多学习。

 



 

 

相关热词搜索: 数据流 解码器