虚位以待(AD)
虚位以待(AD)
首页 > 软件编程 > GO语言 > golang time包下定时器的实现方法

golang time包下定时器的实现方法
类别:GO语言   作者:码皇   来源:互联网   点击:

定时器的实现大家应该都遇到过,最近在学习golang,所以下面这篇文章主要给大家介绍了关于golang time包下定时器的实现方法,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。

golang time包

和python一样,golang时间处理还是比较方便的,以下介绍了golang 时间日期,相关包 "time"的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍。

时间戳

当前时间戳

    fmt.Println(time.Now().Unix())# 1389058332

str格式化时间

当前格式化时间

    fmt.Println(time.Now().Format("2006-01-02 15:04:05")) // 这是个奇葩,必须是这个时间点, 据说是go诞生之日, 记忆方法:6-1-2-3-4-5# 2014-01-07 09:42:20

时间戳转str格式化时间

    str_time := time.Unix(1389058332, 0).Format("2006-01-02 15:04:05")fmt.Println(str_time)# 2014-01-07 09:32:12

str格式化时间转时间戳

这个比较麻烦

    the_time := time.Date(2014, 1, 7, 5, 50, 4, 0, time.Local)unix_time := the_time.Unix()fmt.Println(unix_time)# 389045004

还有一种方法,使用time.Parse

    the_time, err := time.Parse("2006-01-02 15:04:05", "2014-01-08 09:04:41")if err == nil {
    unix_time := the_time.Unix()fmt.Println(unix_time) }
    # 1389171881

以上简单介绍了golang中time包的相关内容,下面开始本文的正文。

引言

这篇文章简单的介绍下golang time 包下定时器的实现,说道定时器,在我们开发过程中很常用,由于使用的场景不同,所以对定时器实际的实现也就不同,go的定时器并没有使用SIGALARM信号实现,而是采取最小堆的方式实现(源码包中使用数组实现的四叉树),使用这种方式定时精度很高,但是有的时候可能我们不需要这么高精度的实现,为了更高效的利用资源,有的时候也会实现一个精度比较低的算法。

跟golang定时器相关的入口主要有以下几种方法:

    <-time.Tick(time.Second)<-time.After(time.Second)<-time.NewTicker(time.Second).C<-time.NewTimer(time.Second).Ctime.AfterFunc(time.Second, func() {
    /*do*/ }
    )time.Sleep(time.Second)

这里我们以其中NewTicker为入口,NewTicker的源码如下:

    func NewTicker(d Duration) *Ticker {
    if d <= 0 {
    panic(errors.New("non-positive interval for NewTicker")) }
    c := make(chan Time, 1) t := &Ticker{
    C: c, r: runtimeTimer{
    // when(d)返回一个runtimeNano() + int64(d)的未来时(到期时间) //runtimeNano运行时当前纳秒时间 when: when(d), period: int64(d), // 被唤醒的时间 f: sendTime, // 时间到期后的回调函数 arg: c, // 时间到期后的断言参数 }
    , }
    // 将新的定时任务添加到时间堆中 // 编译器会将这个函数翻译为runtime.startTimer(t *runtime.timer) // time.runtimeTimer翻译为runtime.timer startTimer(&t.r) return t

这里有个比较重要的是startTimer(&t.r)它的实现被翻译在runtime包内

    func startTimer(t *timer) {
    if raceenabled {
    racerelease(unsafe.Pointer(t)) }
    addtimer(t)}
    func addtimer(t *timer) {
    lock(&timers.lock) addtimerLocked(t) unlock(&timers.lock)}

上面的代码为了看着方便,我将他们都放在一起

下面代码都写出部分注释

    // 使用锁将计时器添加到堆中// 如果是第一次运行此方法则启动timerprocfunc addtimerLocked(t *timer) {
    if t.when < 0 {
    t.when = 1<<63 - 1 }
    // t.i i是定时任务数组中的索引 // 将新的定时任务追加到定时任务数组队尾 t.i = len(timers.t) timers.t = append(timers.t, t) // 使用数组实现的四叉树最小堆根据when(到期时间)进行排序 siftupTimer(t.i) // 如果t.i 索引为0 if t.i == 0 {
    if timers.sleeping {
    // 如果还在sleep就唤醒 timers.sleeping = false // 这里基于OS的同步,并进行OS系统调用 // 在timerproc()使goroutine从睡眠状态恢复 notewakeup(&timers.waitnote) }
    if timers.rescheduling {
    timers.rescheduling = false // 如果没有定时器,timerproc()与goparkunlock共同sleep // goready这里特殊说明下,在线程创建的堆栈,它比goroutine堆栈大。 // 函数不能增长堆栈,同时不能被调度器抢占 goready(timers.gp, 0) }
    }
    if !timers.created {
    timers.created = true go timerproc() //这里只有初始化一次 }
    }
    // Timerproc运行时间驱动的事件。// 它sleep到计时器堆中的下一个。// 如果addtimer插入一个新的事件,它会提前唤醒timerproc。func timerproc() {
    timers.gp = getg() for {
    lock(&timers.lock) timers.sleeping = false now := nanotime() delta := int64(-1) for {
    if len(timers.t) == 0 {
    delta = -1 break }
    t := timers.t[0] delta = t.when - now if delta > 0 {
    break // 时间未到 }
    if t.period > 0 {
    // 计算下一次时间 // period被唤醒的间隔 t.when += t.period * (1 + -delta/t.period) siftdownTimer(0) }
    else {
    // remove from heap last := len(timers.t) - 1 if last > 0 {
    timers.t[0] = timers.t[last] timers.t[0].i = 0 }
    timers.t[last] = nil timers.t = timers.t[:last] if last > 0 {
    siftdownTimer(0) }
    t.i = -1 // 标记移除 }
    f := t.f arg := t.arg seq := t.seq unlock(&timers.lock) if raceenabled {
    raceacquire(unsafe.Pointer(t)) }
    f(arg, seq) lock(&timers.lock) }
    if delta < 0 || faketime > 0 {
    // 没有定时器,把goroutine sleep。 timers.rescheduling = true // 将当前的goroutine放入等待状态并解锁锁。 // goroutine也可以通过呼叫goready(gp)来重新运行。 goparkunlock(&timers.lock, "timer goroutine (idle)", traceEvGoBlock, 1) continue }
    // At least one timer pending. Sleep until then. timers.sleeping = true timers.sleepUntil = now + delta // 重置 noteclear(&timers.waitnote) unlock(&timers.lock) // 使goroutine进入睡眠状态,直到notewakeup被调用, // 通过notewakeup 唤醒 notetsleepg(&timers.waitnote, delta) }
    }

golang使用最小堆(最小堆是满足除了根节点以外的每个节点都不小于其父节点的堆)实现的定时器。golang []*timer结构如下:


golang存储定时任务结构

addtimer在堆中插入一个值,然后保持最小堆的特性,其实这个结构本质就是最小优先队列的一个应用,然后将时间转换一个绝对时间处理,通过睡眠和唤醒找出定时任务,这里阅读起来源码很容易,所以只将代码和部分注释写出。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

您可能感兴趣的文章:

  • golang package time的用法具体详解
相关热词搜索: golang time 定时器 golang 定时器使用 go